MTH 309 - Activity 9 Determinants

1. For each of the following pairs of vectors, graph the parallelogram they span and determine its area.

- i. (4,0), (0,5)
- ii. (4,0), (2,5)
- iii. (4, 1), (2, 5)
- iv. (3, 4), (12, 8)
- v. (a, b), (c, d)

Example: Parallelogram spanned by (3,1) and (1,2). (Hint on the next page.)

- 2. Write a general rule for computing the area of the parallelogram spanned by two vectors in $(R)^2$.
- 3. Now consider the linear transformation $T: (R)^2 \to (R)^2$ defined by

$$T(\mathbf{x}) = \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right] \mathbf{x}.$$

- (a) What happens to the area of each parallelogram from problem 1 when the vectors are transformed by T?
- (b) What about for the transformation given by $S(\mathbf{x}) = \begin{bmatrix} 5 & 6 \\ -2 & -3 \end{bmatrix} \mathbf{x}$? (c) What about for the transformation given by $R(\mathbf{x}) = \begin{bmatrix} 4 & 6 \\ -2 & -3 \end{bmatrix} \mathbf{x}$?
- (d) And for the arbitrary transformation $Q(\mathbf{x}) = A\mathbf{x}$?
- 4. Write a general rule that relates the area of the parallelogram after transformation to the area of the parallelogram before transformation.
- 5. Use your general rule, extended to \mathbb{R}^3 to find the areas of the following parallelopiped (3D parallelogram).

i. Spanned by
$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} -2\\0\\0 \end{bmatrix} \right\}.$$

ii. The unit cube (spanned by $\{e_1, e_2, e_3\}$) after being transformed by $P(\mathbf{x}) = \begin{bmatrix} 1 & 2 & 3 \\ 5 & -1 & 0 \\ 0 & -2 & -12 \end{bmatrix}$.

iii. The parallelopiped from part i. after being transformed by the transformation from part ii.

