MTH 309 - Activity 12 More Vector Geometry

1. Fix a vector v in \mathbb{R}^2 , and consider the function

 $\operatorname{proj}_{v} \colon \mathbb{R}^{2} \to \mathbb{R}^{2}$

where $\operatorname{proj}_{v}(x)$ is the projection of x onto v.

- (a) Draw a picture depicting the vectors v, x, and $\text{proj}_v(x)$.
- (b) What is the geometric relationship between x and $\operatorname{proj}_{v}(x)$? Between v and $\operatorname{proj}_{v}(x)$?
- (c) Write a formula for $\operatorname{proj}_{v}(x)$ in terms of v and x.
- (d) Use $\operatorname{proj}_{v}(x)$ to calculate a vector *n* that is perpendicular to *v*.
- (e) What is the relationship between $\operatorname{span}\{v, x\}$ and $\operatorname{span}\{v, n\}$?
- (f) Given a basis for a 2-dimensional subspace $\{v_1, v_2\}$, use projection to construct an orthonormal basis $\{b_1, b_2\}$ for the subspace.
- 2. Consider the subspace W of \mathbb{R}^3 spanned by $w_1 = (1, 1, 0)$ and $w_2 = (-1, 3, 0)$.
 - (a) Geometrically describe the subspace W?
 - (b) Based on your geometric description, what is the projection of the vector v = (4, 7, 9) onto W?
 - (c) Compute the projections $\operatorname{proj}_{w_1}(v)$ and $\operatorname{proj}_{w_2}(v)$.
 - (d) What is the relationship between $\operatorname{proj}_W(v)$ and the projections $\operatorname{proj}_{w_1}(v)$ and $\operatorname{proj}_{w_2}(v)$?
 - (e) Now compute the projections of v onto the *standard basis* vectors of W. What is the relationship between those projections and $\operatorname{proj}_W(v)$?
- 3. Now consider the linear transformation $\operatorname{ref}_{v}(x)$ that reflects its input vector x across the line spanned by the fixed vector v.
 - (a) Write a formula for $\operatorname{ref}_v(x)$ in terms of the vectors x and v.
 - (b) What is the matrix representation of ref_v ?
 - (c) Determine the eigenvalues and eigenvectors of ref_v .